全国客户服务:4006-054-001 疑难解答:159-9855-7370(7X24合作/咨询),173-0411-9111/155-4267-2990(售前),座机/传真:0411-83767788,微信:543646
上一张 下一张

生物数学学报成功收录查询地址

《生物数学学报》简介 《生物数学学报》Journal of Biomathematics(季刊)1986年创刊,是由中国数学会生物数学学会理事长、中国科学院数学与系统科学研究院陈兰荪研究员主编,中国数学会生

4006-054-001 立即咨询

生物数学学报成功收录查询地址

发布时间:2022-10-14 08:48 热度:

生物数学学报成功收录查询地址

生物数学学报
期刊级别:北大核心
周期:季刊
国内统一刊号:34-1071/Q
国际标准刊号:1001-9626
主办单位:中国数学会生物数学学会
主管单位:中国数学会

  《生物数学学报》简介

  《生物数学学报》Journal of Biomathematics(季刊)1986年创刊,是由中国数学会生物数学学会理事长、中国科学院数学与系统科学研究院陈兰荪研究员主编,中国数学会生物数学学会主办、科学出版社出版的综合性生物数学学术刊物。主要刊登用数学的理论与方法创造性地解决农、林、牧、医药、生态以及其他有关生命科学等方面的实际问题的论文以及在理论和方法上有所发展的研究报告及研究简报等。《生物数学学报》主管单位:中国数学会,主办单位:中国数学会生物数学学会,国内统一刊号:34-1071/Q,国际标准刊号:1001-9626

  《生物数学学报》收录情况

  国家新闻出版总署收录 维普网、万方数据库、知网数据库、数学评论、数学文摘、日本科学技术振兴机构中国文献数据库收录

  《生物数学学报》影响因子:

  截止2014年万方:影响因子:0.44;总被引频次:685

  截止2014年知网:复合影响因子:0.478;综合影响因子:0.397

  《生物数学学报》栏目设置

  研究报告、文献综述、简报、专题研究。

  《生物数学学报》投稿须知

  1.内容:立意新颖,观点明确,内容充实,论证严密,语言精炼,资料可靠,能及时反映所研究领域的最新成果。本刊尤为欢迎有新观点、新方法、新视角的稿件和专家稿件。

  2.格式必备与顺序:标题、作者、作者单位、摘要、关键词、正文、注释或参考文献。篇幅以2200-8800字为宜。2200字左右为1个版面。

  3.请在来稿末尾附上作者详细通讯地址。包括:收件人所在地的省、市、区、街道名称、邮政编码、联系电话、电子信箱、代收人的姓名以及本人要求等,务必准确。论文有图表的,请保证图片和表格的清晰,能和文字对应。

  4.本刊实行无纸化办公,来稿一律通过电子邮件(WORD文档附件)或QQ发送,严禁抄袭,文责自负,来稿必复,来稿不退,10日未见通知可自行处理。

  5.本刊来稿直接由编辑人员审阅,疑难重点稿件送交相关专家审阅,本刊坚持“公平、公正、公开、客观”的审稿原则,实行“三审三校”制度。

  6.来稿一经采用,杂志社将发出《用稿通知单》,出刊迅速,刊物精美,稿件确认刊载后,赠送当期杂志1册。

  2016 年《生物数学学报》02期优秀论文目录:

  基于H~距离对P53肿瘤抑癌基因的研究与应用(英文) ………………………………………………谈承杰;闫艳艳;朱平;

  具有无穷时滞的一个捕食者-两个竞争被捕食者生态动力学模型的动力学研究(英文) …………………………………………张道祥;陶龙;丁伟伟;周文;吕翔;

  脉冲时滞抛物型方程组解的存在唯一性(英文) …………………………………………何莲花;刘安平;

  一类平面拟齐次向量场的全局性质 …………………………………………黄莉;冯光庭;张金慧;张兴安;

  基于多层次模糊综合评判法的小区域森林火灾风险分析………………………………………… 赵迎子;常玉;崔洁琼;刘春艳;杨明明;鲁法典;

  多水平Poisson模型在公共卫生领域中的应用………………………………………… 丁丞;徐凯进;卢汉体;初菁菁;沈毅;

  基于模糊模型的乙肝病毒传播的母婴免疫控制方法………………………………………… 李景溪;江武明;

  一类互惠种群脉冲模型的正概周期振荡研究………………………………………… 廖永志;张天伟;

  基于地理加权回归的我国各市人口总数的空间特征分析 …………………………………………玄海燕;李琪;张运虎;

  基于多时滞Lotka-Volterra型捕食链模型的概周期解………………………………………… 郑秀亮;高亚萍;

  肿瘤细胞增长模型的分析与研究 …………………………………………张鹏鸽;高淑萍;朱佑彬;

  带有扩散和Holling Ⅱ功能反应的n个斑块捕食食饵系统的一致持久生存和灭绝分析………………………………………… 高扬;

  用于昆虫分类鉴定的几何形态计量学方法研究:相对扭曲分析 …………………………………………蔡小娜;黄大庄;沈佐锐;高灵旺;

  运用Monte Carlo模拟方法评价林木转化分析法………………………………………… 齐明;何贵平;

  投稿论文:一类平面拟齐次向量场的全局性质

  【摘要】:本文利用中心投影思想证明了一类拟齐次平面向量场的几何性质仅依赖于它的诱导向量场.并根据其诱导向量场的性质证明了该向量场有10种不同拓扑结构的扇形不变区域,进而讨论了其全局拓扑结构,得到了这类向量场当n为偶数时,有17种不同的全局拓扑分类,当n为奇数时,有32种不同的全局拓扑分类.

  【关键词】: 拟齐次向量场 切向量场 不变直线 全局拓扑分类

生物数学学报



生物数学学报成功收录查询地址


SCI学术指导


生物数学学报成功收录查询地址
公司地址:大连市高新园区黄浦路科技创业大厦19层 运营中心:大连市沙河口区金盾路127号 研发中心:大连市西岗区大工西岗科创产业园10层 邮政编码:116029
全国客户服务热线:4006-054-001 微信咨询:543646 业务咨询、合作:159-9855-7370(同微信) / 173-0411-9111 电子邮件:Djy@Jiqunzhihui.com
集群智慧®为我公司注册商标,在商标国际分类第1、7、9、11、20、30、35、36、37、38、40、41、42、44、45类用途中受法律保护,侵权必究。侵权删除:2544906@QQ.com
本企业已通过ISO9001国际质量管理体系认证、ISO45001职业健康安全管理体系认证、ISO14001环境管理体系认证、企业信用等级AAA级认证、科技型中小企业认证、高新技术企业认证。
本站部分服务由本平台认可的第三方服务机构提供,如服务的质量有任何问题,请第一时间向我平台反馈,我们将及时为您解决,平台保障用户的全部权益不受任何损害。
请认准本站网址(www.jiqunzhihui.org.cn),推荐百度搜索“集群智慧云科服”直达本站。
版权所有:大连集群智慧科技服务有限公司 ICP备案:辽ICP备2021010330号-3 增值电信业务经营许可EDI证:辽B2-20230179 D-U-N-S邓白氏全球编码:620550735 手机版